Reporter review:

New results from geomagnetic secular variation studies

Arnaud Chulliat (IPGP, France)

1

7 July 2011

IUGG 2011

Session A011 (Div. I & V, Saturday 2 July 2011):

Main field and secular variation: observations, modeling and mechanisms

Other sessions dealing with SV (not covered by this talk):

- A013: Numerical simulations and observations: looking back and predicting the future (Div. I)
- A132: Results from the decade of geopotential research an beyond (Div. V; see C. Beggan's report)
- U03: Recent progress in the studies of the Earth's deep interior

Outline

1. Main field and secular variation modeling

- IGRF-11 and parent models
- S. Maus, F. Lowes, E. Thébault's presentations

1. Geomagnetic jerks

- The 2007 jerk
- C. Demetrescu's presentation

1. Dipole decay

- The role of flux expulsions
- R. Holme's presentation
- 2. Interpretation in terms of core processes
 - A list of some recent papers (2010-2011)

Many thanks to the speakers for kindly providing me with their slides!

This is <u>not</u> a review of the field, only a personal account of the session and a few selected recent papers.

Main field and secular variation modeling

December 2009: release of the IGRF-11 model (Finlay et al., GJI, 2010; EPS special issue, Dec. 2010)

7 July 2011

IUGG 2011

Parent models: CHAOS-3 (Olsen et al. 2010), GRIMM-2 (Lesur et al. 2010)

Stefan Maus' presentation: What is the accuracy of geomagnetic field models?

Valid IGRF Range: 1900-2015

Compute Magnetic Field Values

NGDC online calculator snapshot

Results:

Lat: - 37° 51' Lon: 145° 4' 12'' Elev:0.00 m	Declination + East - West		Horizontal Intensity	North Component + North - South	East Component + East - West	Vertical Component + Down - Up	Total Field
6/23/2011	11° 38'	- 68° 45'	21,757.2 nT 🛨 🕻	21,310.0 nT	4388.7 nT	-55,958.8 nT 🗖	60,039.7 nT
Change per year	- 0' per year	1' per year	6.7 nT/year	6.9 nT/year	-0.5 nT/year	23.8 nT/year	-19.8 nT/year

- MF commission error
- crustal field omission error
- disturbance field omission error

7 July 2011

6

Main field: 3σ error against IGRF-11

Error in total field

Models are accurate on their release date and deteriorate subsequently

7 July 2011

IUGG 2011

7

Typical* 99.7 percentile error at Earth surface

	Total field	Dip	Declination
Main field, IGRF	172 nT	0.26°	7 160 ⁰nT/H
Crustal field	590 nT	0.86°	26 200 ⁰nT/H
Disturbance field	270 nT	0.98°	11 300 ⁰nT/H
Total (√Σe ²)**	670 nT	1.33°	29 400 ºnT/H

*Actual values depend on magnetic latitude ** Only approximately valid for non-Gaussian errors

Frank Lowes' presentation: "Orthogonality of Harmonic Potentials and Fields in Spheroidal Coordinates"

Spherical harmonics are orthogonal, but the Earth is not exactly spherical. \Rightarrow This matters for short wavelength crustal fields.

In spheroidal coordinates, the potential V may be expressed as

 $V'_n^m = U_n^m(u) S_n^m(\vartheta, \lambda)$

where $U_n^m(u)$ is a complicated function of u, and $S_n^m(\vartheta, \lambda)$ has the same algebraic form as for spherical surface harmonics.

BUT these $S_n^m(\vartheta,\lambda)$ are NOT orthogonal over the spheroid!

Orthogonality can be regained if we weight the integration over the spheroidal surface by a simple function, $W'(\vartheta)$, of reduced colatitude:

W'(ϑ) = [($u^2 + E^2$)/($u^2 + E^2 \cos^2 \vartheta$)]^{1/2}.

This weighting function gives unit weight at the poles, and more weight at the equator, in such a way that

$$\iint_{\text{spheroid}} W'(\vartheta) S_n^{m}(\vartheta, \lambda) S_N^{M}(\vartheta, \lambda) dA_{\text{spheroid}} = 0$$

unless n=N and m=M

7 July 2011

Erwan Thébault's presentation: "A parade of archeomagnetic field models – from global to local scales"

Global modeling

"1) We consider the actual archeomagnetic data base between 5000 BC and 2000 AD. – 2) We compute the IGRF magnetic field on these data locations. – 3) We solve for the dipole field only (n=1, m=0,1) within sliding time windows of 50, 100 and 150 years."

Regional modeling

Despite a sophisticated inversion scheme, regional models are not able to correctly represent the intensity variations.

7 July 2011

IUGG 2011

Proposed solution: calculating intensity master curves.

An algorithm for deriving intensity master curves (cubic B-splines, bootstrap + IRWLS, L1-norm)

[Thébault & Gallet, GRL, 2010]

⇒ "Virtual archeomagnetic observatories"?

 \Rightarrow Relative datation becomes conceivable.

7 July 2011

Geomagnetic jerks

A new jerk around 2007, marking the end of an acceleration pulse at the coremantle boundary (Chulliat et al., 2010); a new jerk in 2010?

Crisan Demetrescu's presentation: "Toward changing a paradigm? New insights on geomagnetic jerks from long time-series of geomagnetic data and models"

What are the (quasi)-periodicities in the SV signal at magnetic observatories?

Normal	Jackson and	Zatman and	Dickey and	Buffett et al.
modes	Mound [2010]	Bloxham [1997]	de Viron [2009]	[2009]
1	81 years	76.2 years	85 years	86.3 years
2	62	52.7	50	42.9
3	30.5		35	30.6
4			27.5	23.6

+ sunspot-cycle variations in annual means

+ 23 other observatories with series > 100 yrs

Dipole decay

The dipole decay over 1840-1980 is almost entirely due to the growth of the South Atlantic reversed flux patches. No patch before 1840 => no dipole decay? (Gubbins et al., 2006)

Richard Holme's presentation: "The strength of the geomagnetic field, 1590-1840"

The dipole decay before 1833 (first scalar measurement by Gauss) is poorly known.

7 July 2011

IUGG 2011

Robust statistics

- \Rightarrow The fit to gufm is as good before and after 1840...
- \Rightarrow Improvement when using only "good" data
- \Rightarrow Disagreement with some of the "best" data => should not limit to the best data

Direct measurements

- Between 1820 and 1840, several workers measured *relative* intensity directly – aimed to establish variation with location
- Hansteen (based in Christiania, Oslo) made particularly careful measurements, and reports that his instrument did not demagnetise (supported by Sabine)
- In Annalen der Physik, **82**, 309-330, 1826, he reports a drop in intensity at Christiania of 0.005% from 1820 to 1825. gufm1 predicts a fall of 0.003%.
- Less well-constrained decay rates for London and Paris similarly also slightly greater than gufm1.
- Consistent with continued field decay, at least back 20 years!

Interpretation in terms of core processes

Other modeling and jerk studies: Ballani et al. (2010), Wardinski & Holme (2011), Holme et al. (2011)

Core flows: Beggan & Whaler (2010), Schaeffer & Pais (2011), Finlay & Amit (2011), Fournier et al. (2011)

SV time scales: Lhuillier et al. (2011)

Magnetic diffusion: Chulliat & Olsen (2010), Chulliat et al. (2010), Asari et al. (2010)

Torsional oscillations: Gillet et al. (2010)

Conclusion

- The decade of geopotential research was highly successful with respect to MF and SV modeling; a radically new dynamical picture of the core surface has emerged from recent models (and still remains to be understood).
- Research on the fast SV and its interpretations (short timescale TO, acceleration pulses, rapid core flows) should greatly benefit from the Swarm data and models.
- The global archeomagnetic dataset is still growing, and more robust modeling methods are being developed. A better understanding of the present field could lead to the use of physical constraints in archeomagnetic models.
- Despite much progress in modeling, predicting the future SV is still largely impossible beyond a few years; a grand challenge for the next decade?