

How to cite:
Bartels, J. (1951). Advance print from IATME Bulletin No. 12e: An attempt to standardize the daily international magnetic character figure. IUGG. https://doi.org/10.25577/y25c-rd08

INTERNATIONAL UNION OF GEODESY AND GEOPHYSICS

ASSOCIATION OF TERRESTRIAL MAGNETISM AND ELECTRICITY

Advance Print from IATME Bulletin No. 12e

"An attempt to standardize the daily international magnetic character figure"

by
Julius Bartels

```
An attempt to standardize the daily international magnetic character figure.
```

By Julius Bartels, Göttingen.

Contents: 1. Introduction. - 2. Remark on Notation and Symbols.*)3. Purpose. - 4. Derivation of cp from the indices Kp. - 5.General relation between Ci and Cp. - 6. Discussion of days with large differences (Ci-Cp). - 7. Systematio changes of (Ci - Cp). - 8.Causes for shifts in the standard of Ci. - 9. Statistical aspects of Ci.

Notes: 1. The daily sum of K-indices, and the indices B and $B p$. 2. Specimen for Cp. - 3. Local daily character-figures Ck and Cs. 4. Local bias in C and Ci. - 5. Characterization of months and years.

References. - Main conclusion.

1. Introduction. As a measure for the intensity of geomagnetic disturbance, the daily international magnetic character figure - here designated $\underline{C i}$ - has become comparable in popularity to the Zürich relative sunspot number as a measure of solar activity. An unbroken series of Ci from 1884 to the present is available, as the result of a remarkable collaboration of nearly all magnetic observatories. Ci is now being derived under the auspices of the International Association of Terrestrial Magnetism and Electricity (IATME), through its Committee on Characterization of Magnetic Disturbances (CCMD), by Dr.J.Veldkamp (De Bilt).

Since 1940, the K-index has been introduced to measure magnetic disturbance for three-hour intervals. At the 0slo Meeting 1948 of the IATME [I] it was
"recommended that the Committee (CCMD) develop proposals for a method of determination of Ci from K-indices which would give a homogeneous series of the former. When this fact could be demonstrated, the matter of discontinuing the present method of determining Ci could be taken up with URSI (Union Radio-Scientifique Internationale) and other interested groups"

The following proposal for a daily planetary character figure Cp to be derived from planetary three-hour-range indices $\underline{K p}$ is submitted to the members of the CCMD and to others interested. The underlying studies and calculations are reproduced so far only as they seem relevant to describe $C p$ and its relations to Ci; a few Notes will give additional details.
${ }^{*}$) Symbols and abbreviations are underlined where they occur first.
2. Remark on Notation and Scales. The reader is asked to excuse some changes in symbols etc. introduced to simplity the typing. Kp is $[2,3]$ the planetary three-hour-range index, (scale of 28 steps, from Oo, O_{+}, l-, lo, l+, 2-, ... to 8+, 9-, 90). Kp is currently computed from the K-indices of 11 observatories [3], and now available for the 13 months of the Second International Polar Year (August 1932 to August 1933) and for every day since 1940 January 1. It is hoped eventually to obtain Kp-indices for the 3 years 1937 to 1939.

The daily character assigned at a single observatory (scale 0 , 1, or 2) is C. If neoessary, such symbols like $\mathrm{C}(\mathrm{Si})$ shall denote C for Sitka, with the two-letter abbreviations for the names of observatories used in the tables listing C or K. Ci (scale 0.0 to 2.0) is the daily international magnetic character figure, derived as the arithmetic mean of the individual characters C for all collaborating observatories. Cp, (same scale as Ci, with the option to split 2.0 into 2.0 to 2.5) is the new planetary character figure. To avoid decimals, the ten-fold values of $C i, C p$, as well as of the "excess" (Ci - Cp) are used occasionally, and called Ti, $\underline{T p}$, and $\underline{E i}=T i-T p$ 。

A more detailed classification of storm days by splitting, for Cp , the conventional maximum 2.0 into steps 2.0 to 2.5 will be indicated in § 4. Anybody who wishes to preserve, in Cp, the conservative scale of Ci , ending with 2.0 , may simply regard all $\mathrm{Cp}=2.0$ to 2.5 as 2.0. For the purpose of comparisons and correlations with Ci, this contraction of the last steps into $C p=2.0$ will be used anyway.
3. Purpose. The time-variations of the geomagnetio field are superpositions of four main parts
(a) secular variation,
(b) daily variations, solar (Sq) and lunar (L), of the type most distinctly shown on quiet days,
(c) disturbances, of the type most intense in polar regions,
(d) post-perturbation, most clearly shown at equatorial stations in a depression of H, slowly recovering.

Just a.s K and Kp , Cp will refer to part (c) only. With the usual assumption that this "magnetic activity" is due to solar corpuscular radiation P ($=$ particle radiation), Cp can be regarded as daily index for the intensity of P for the entire earth. The scale for Cp will be the same as that for Ci, ranging from 0.0 to 2.0, with the option to split the range for the highest figures to extend to 2.5. The formula for Cp has been adjusted so that, in the 10 years 1940 to 1949 - the standardization basis -, there will be, in Ci as well as in Cp, about equal numbers of days with each of the 21 steps 0.0, 0.1,, 2.0.
4. Derivation of Cp from the indices Kp . Cp is based exclusively on the planetary three-hour-range index Kp , described previously [2].

After several trials, the following procedure was adopted: Each value of $K p$ is replaced by a weight \underline{g} according to Table l, and the sum G of the 8 values of g for each day is computed. G determines, according to Table 2, the daily planetary character-figure Cp. The two tables necessary to compute Cp from the Kp are

Table 1. Weights g assigned to Kp .

Kp	g								
		$2-$	6	$4-$	22	$6-$	67	$8-$	179
00	0	20	7	40	27	60	80	80	207
$0+$	2	$2+$	9	$4+$	32	$6+$	94	$8+$	236
$1-$	3	$3-$	12	$5-$	39	$7-$	111	$9-$	300
10	4	30	15	50	48	70	132	90	400
$1+$	5	$3+$	18	$5+$	56	$7+$	154		

Table 2.
Key for $C p$ as a function of the daily sum G of the weights g.

Limits	of G	Cp	Limits	of G	Cp	Limits of G	Cp
0.	22	0.0	121.	139	0.9	562... 729	1.8
23...	34	0.1	140...	164	1.0	730... 1119	1.9
35...	44	0.2	165...	190	1.1	1120... 1399	2.0
45...	55	0.3	191...	228	1.2	1400... 1699	2.1
56...	66	0.4	229...	273	1.3	1700... 1999	2.2
67...	78	0.5	274...	320	1.4	2000... 2399	2.3
79.	90	0.6	$321 .$.	379	1.5	2400... 3199	2.4
91...	104	0.7	380...	453	1.6	3200...	2.5
105...	120	0.8	454...	561	1.7		

Examples

1940 March 1, $20.201+100_{+}$	1940 March $24,80{ }^{6}$, 90 90 $8+$
Kp $=10$ l 10	$6+$ 60 50 $4+$ 94 80 48 32 807 400 900 $8+$
$\mathrm{G}=56, \mathrm{Cp}=0.4$; Ci was 0.3	$\mathrm{G}=1497, \mathrm{Cp}=2.1$; Ci was

Reasons for choosing this procedure: The weights g in Table 1 have been chosen so that the average three-hour-range of the most disturbed field-component at a standard station like Wingst or Cheltenham, in an interval with $K p$, would be about 2 g gammas. The limits of G for $C p$ in Table 2 were ohosen so that, in the 10 years 1940 to 1949, the number of days with $\mathrm{Cp}=0.0,0.1, \ldots, 2.0$ should about equal the number of days with the same values of Ci . In other words, the frequency-distribution, for the 3653 days in the 10 years, is practically the same for $C p$ and the original. $C i$.

Table 3 gives daily values of $T p=10 \mathrm{Cp}$ and $\mathrm{Ei}=10$ ($\mathrm{Ci}-\mathrm{Cp}$); 10 Ci can easily be derived as $\mathrm{Tp}+\mathrm{Ei}$. Thus, e. g., for 1940 January 3, $\mathrm{Ci}=1.8, \mathrm{Cp}=1.5$.
(Text continued on page C 12)

Daily values,
planetary character-figures Cp, 5 and differences (Ci - Cp).

To avoid decimals, the
table lists the tenfold value
$T p=10 \mathrm{Cp}$
and the excess
$E 1=10(\mathrm{Ci}-\mathrm{Cp})$
International Polar Year 1932/33 and all months 1940 January to 1949 December. For the months 1950 January to 1951 February, for which final Ci are not yet available, only $T p=10 \mathrm{Cp}$ is given. Days with Cp $=2.1$ or 2.2 are marked; for these, $C i=2.0$, and Ei has been given as 0 .

1932 Aug 32 Sep 32 Oct 32 Nov 32 Dec					
1	$6+3$	$6+2$	$3+1$	$11+1$	$2 \div 4$
2	120	$4+4$	$5+3$	$6+2$	$3+2$
3	$11+3$	$2-1$	$5+1$	$4+1$	$1+3$
4	$8+3$	$2+1$	$3+4$	$4+4$	$3+1$
5	$8+3$	$3+5$	$3+3$	$5+1$	$1-1$
6	$2+3$	$13+2$	$1+1$	$2-1$	$2+2$
7	10	$3+6$	$1+2$	$1+4$	00
8	10	$10+2$	$2+2$	$1+2$	$8+5$
9	$4-1$	$8+2$	$5+4$	$1-1$	$8+2$
10	00	10	$7+3$	10	$5+3$
11	$1+3$	10	$3+3$	$1+2$	$1 \div 2$
12	$7+4$	$1+1$	$2+2$	$4+4$	10
13	$7+4$	20	$1+1$	$5+2$	$6+5$
14	$2+3$	$3+1$	$0+3$	$9+3$	$13+5$
15	$1+1$		$13+5$	$6+5$	$11+5$
16	$1-1$	$1-1$	$10+3$	$1.4+2$	$10+5$
17	10	10	$9+3$	$8+4$	$10+3$
18	10	$7+2$	$3+3$	$6+3$	$6+2$
19	$0+1$	$9+3$	$3+2$	$4+2$	$6+2$
20	$0+1$	$7+3$	$12+3$	$4+2$	$1+1$
21	$6+4$	$5+1$	$12+3$	$1+1$	00
22	$6+4$	$6+5$	$6+4$	$1-1$	$1+1$
23	$5+3$	$12+4$	$11+1$	$1+1$	$0+1$
24	$0+1$	$14+2$	$7+3$	00	$1+1$
25	$2+2$	$15+3$	$4+3$	$4+6$	$4+5$
26	10	$10+1$	10	$1+1$	$5+3$
27	$13+4$	$8+2$	$7+4$	10	$6+3$
28	$17+2$	30	10	$4+3$	$6+3$
29	$13+4$	$5+3$	$1+2$	$8+2$	20
30	$12+1$	60	$8+1$	$2+2$	$4+4$
31	$6+1$		30		$7+2$

193	Jan 3	Feb	Mar	Apr	May	Jun	Jul	Aug
1	$8+4$	$0+1$	$3+1$	50	$18+1$	110	$3+2$	00
2	$6+2$	$6+2$	$3+1$	40	$10+1$	$3+2$	$3+1$	10
3	20	$1+2$	$4+1$	$7+2$	80	$3+1$	$3+2$	10
4	00	$1+2$	20	$7+1$	$9+1$	10	$2+2$	$0+1$
5	00	$1+2$	00	$3+2$	80	$1-1$	$2+1$	$14+4$
6	$9+3$	$0+1$	10	$5+1$	100	00	$2+2$	$11+2$
7	$5+3$	$4+1$	$0+1$	$9+1$	$5+2$	10	$1+1$	$3+1$
8	$2+1$	$1+3$	$1+1$	$6+2$	$2-1$	$7+3$	$4+5$	$2+1$
9	10	30	$1-1$	70	00	$5+3$	$10+3$	$0+1$
10	00	$1+1$	$3+1$	$5+2$	10	$2+1$	$5+4$	10
11	$0+1$	00	$6+2$	10	10	10	$6+3$	00
12	$0+1$	$1+2$	$3+1$	00	$0+1$	$2+2$	40	$0+2$
13	10	00	$5+3$	$0+1$	40	$14+2$	10	$11+4$
14	$2+5$	$4+4$	$4+2$	$2+3$	$8+2$	$9+3$	10	$6+4$
15	$10+2$	$6+3$	$1+1$	$10+2$	$8+1$	$5+3$	00	$4+4$
16	$4+1$	$0+1$	10	$10+3$	$4+2$	10	$1+2$	$2+2$
17	3-1	00	$1+3$	$13+1$	$6+2$	20	$5+5$	$7+3$
18	10	$1+2$	$13+2$	110	$10+1$	10	$6+4$	$10+3$
19	$7+5$	$12+5$	$13+2$	120	$5+2$	$4+4$	$2+1$	$8+2$
20	$7+2$	$12+2$	$14+2$	$10+2$	$1+1$	$9+3$	$3+2$	$8+3$
21	$0+1$	$14+3$	$12+3$	$11+1$	20	$3+3$	10	$10+3$
22	$9+5$	$13+3$	$12+3$	$10+2$	$2+1$	$1+2$	$2+1$	20
23	$9+2$	$13+2$	$13+2$	$10+1$	20	$0+1$	$10+5$	$8+2$
24	$9+2$	$13+2$	$13+2$	$5+1$	10	10	$13+3$	$8+3$
25	$8+1$	$10+1$	$8+2$	$4+1$	$2+1$	$5+5$	$3+2$	$5+4$
26	100	$11+1$	$4+2$	$6+2$	00	$3+3$	$3+4$	$5+4$
27	$12+2$	$7-1$	$9+2$	$3+1$	$3+4$	$6+3$	$7+4$	$2+1$
28	$11+1$	$2+1$	90	4-1	$3+3$	$9+1$	20	10
29	$7+2$		$7+1$	10	$6+5$	$6+2$	$1+1$	10
30	70		$5+1$	$10+3$	$9+3$	$3+1$	10	$1+1$
31	$4+1$		$5+1$		$11+1$		$2+1$	$0+1$

1940	Jan 4	Feb	Mar 40	Apr	May	Jun	Jul 40 Aug 40 Sep		
1	50	14. +1	4 -1	$17+1$				$6+1$	$\underline{11}+1$
2	8 -1	10	$2-1$	$13+1$	$2+1$	$4+1$	$1+1$	$7+1$	11 +2
3	$15+3$	$9+2$	$4-1$	190	20	$3+2$	$8+1$	$14+1$	
4	120	$4+2$	$1+1$	$9+2$	10	$1+1$	$\begin{array}{rr}11 & 0 \\ 9 & 0\end{array}$	$5-1$ $6+1$	$\begin{array}{ll}9 & +1 \\ 6 & 0\end{array}$
5		$6-1$	10	$5+1$	2	$5+2$	90		
6	$10+2$	$8+2$	$0+1$	$5-1$	0	$14-1$	80	$9+1$	$4+1$
7	$10+2$	$7+2$	10	0	$3+1$	$13-1$	30	$8+1$	$13-1$
8	7 -2	6 +1	$7+1$	10	$1+1$	100	$2+1$	$6+1$	$8+1$
9	$7+3$	$5-1$	$12-1$	0 +1		$8+1$	$8+1$	$14+2$	$9-1$
10	$12+3$	$3+1$	$3-1$		$8+3$	30	$12+1$	$4+2$	$0+1$
11	$11+3$	$5+2$		$2+1$	$8+2$	$1+1$	$5+1$		$1+1$
12	120	$9+1$	$7+3$	10	$9+2$	$2+1$	20	60	10
13	4 -1	$5+2$	60	$6+1$	60	$1+1$	$17+1$	$3+1$	$1+1$
14	$1+1$	30	$6-2$	60	$7+1$	$15+1$	$10+2$		$9+2$
15	30	5 -1	$0+1$	$9+1$	$8+2$	$12+1$		$0+1$	7
16	7 +1	40	$2+2$	$8-1$	$2+2$	$8+1$		10	$7+1$
17	$11+1$	20	$0+1$	4 -1	$5+2$	80	$1+1$	10	$0+1$
18	$14+3$	0	00	10	$13+2$	$9+1$	$0+1$	$7+3$	10
19	$4+1$	$0+1$	$10+2$	30	$5+2$	$6+1$	$2+1$	$5+3$	
20	$4+1$	$11-1$	120	$5+2$	$5+2$		$1+1$		
21		$10 \quad 0$		$7+2$	$4+2$	10	$5+1$	$3+1$	$7+2$
22	$4+2$	8 -2	60	100	130	$4+4$	$8+1$	$5+2$	$4+1$
23	$3+2$	60	$16-1$	$4+1$	$10+2$	$4+1$	$3+1$	$2+1$	0
24	$8+1$	90	210	$5-1$	180	$9+1$	$6+1$	0 O	10
25	$8+1$	$14+2$	21	$17+1$	$7+1$	$19+1$	50	$1+2$	110
26	$0+2$	$4+3$	160	$15-1$	120	12. 0	$2+1$	$10+1$	$15+2$
27	20	$3-1$	130	$6+2$	11. -1	$4+1$	$1+1$	$8+1$	$15+1$
28	$0+1$	30	110	$5+1$	90	$3+2$	30	$6+2$	$15-1$
29	$6+3$	$7+2$	19 0	$6-1$		$2+4$	50		$6+1$
30	$10+2$		[120	$6+2$			$10+1$	$1+1$	$4+3$
31.	$13+2$		190				$9+1$	$4+1$	

1940 Oct 40 Nov 40 Dec 1941 Jan 41 Feb 41 Mar 41 Apr 41 May 41 Jun

	Jul 4	Aug	Sep	Oct	Nov	1 Dec	1942 Jan 42 Feb 42 Mar		
1		$4+1$	$9+1$		18 -1	18 0		$2+1$	$19+1$
2	4 -1	$14-1$	8 -1	$3+1$	$1+2$	$12-1$	$7+4$	90	150
3	$5+2$	$7+1$	20	$1+1$	$2+2$	$5+2$	$9+2$	4 -1	150
4	$12+1$	$19-1$	10	$1+1$	$3-1$	$9+1$	120	$1+1$	90
5	$22 \quad 0$	12-1	00	30	$8+1$	$6+2$	110	$11+2$	$16+1$
6	$15+1$	110	$1-1$		150	50	$7+1$	$13+2$	110
7	$16-1$	$9+2$	$10+2$	10	$9+1$	40	$7-2$	60	$10+1$
8	$8+1$	20	$5+1$	$5+1$	100	$3+2$	$1+1$		$14-1$
9	$8+2$	10	$5+1$	30	$7+2$	$4+1$	$2+1$	10	15-1
10	$11 \quad 0$	$0+1$	$3+1$	$3+3$	110	$2+1$		$5+2$	80
11	$4+1$	40	$4+1$	$15+1$	$11-1$	$0+1$	$5-1$	50	$6-1$
12	$5+1$	30	10	12 -2	$5+1$	$1+1$	$5+1$	10	20
13	$1+1$	$3+1$	$12+1$	50	$3+1$	$5+4$	$2+1$	$3-1$	13-1
14	10		$12+1$	$7+2$	$2+1$	$12-1$	$1+3$	$3+2$	120
15			$12+1$	9-1	$0+2$	$5+1$	$4+1$	$8+1$	7 -2
16	7 +1	10	100	$8+1$	$2+1$	$7+1$	$5+3$	70	
17	50	10	60	20	$13+2$	$6+1$	$10+1$	$5-1$	$5-1$
18	30	$2+1$	2. 20	20	10 +2	$7+2$	100	10	$8+2$
19	30	$9+2$	21	60	100	$2+1$	90	$1+1$	$10+1$
20	50	$1+1$	$14+1$	30	40	$1+1$	$2+1$	$4+1$	9-2
21	14 0	$4+1$	130	$1+1$	$6-1$	$1+2$	$1+1$	60	110
22	10	$1+1$	20	$13+3$	$8+1$	$1+1$	$5+1$	4-1	9-2
23	$8+1$	$1-1$	$8+2$	$8+1$	80	$4+3$	$3-1$	$14+3$	70
24	$5+2$	$5-1$	$12+1$	$8+1$	20	$4+1$	$1+1$	$12+1$	5-2
25	5 +2	5 +2	110	$3+1$	$2+1$			90	$3-1$
26	10	$11+2$	$1+1$	$5+3$	10	40	10		$12+3$
27	$1-1$	$17-1$	$7-1$	$3+1$	$5+2$	$7+1$	$2+1$	$5+3$	40
28	$1+1$	$11+2$			160	$5-1$	60	$12+2$	$1-1$
29	10	130	10-2	30	$4+1$	60	$1+1$		$8+1$
30	$1+1$	120		40	$3+1$	$3+1$	$2+1$		7 0
31				$15+1$		$2+1$	$1-1$		

1942 Apr 42 May 42 Jun 42 Jul 42 Aug 42 Sep 42 Oct 42 Nov 42 Dec

1	5	+2	7	+1	1	+1	8	0	2	0	6	+2	0	+1	7	+1	3	+1
2	12	+1	6	+2	0	0	2	0	3	0	9	-1	16	+1	8	+1	2	0
3	13	-1	4	-1	5	+2	1	0	4	-1	3	0	15	0	5	+1	2	+1
4	17	+1	8	+2	1	+1	0	0	1	+1	4	+1	13	0	7	-2	7	-1
5	6	-1	10	-1	3	+1	2	0	2	+1	5	0	10	+1	3	0	1	+1
6	3	-1	3	0	2	0	3	+1	7	+1	12	0	3	0	4	-1	1	+1
7	1	0	1	0	1	0	3	+1	9	+2	6	0	9	-3	5	-1	6	+2
8	12	0	1	0	1	+1	13	0	1	-1	5	-3	4	0	8	+1	9	-1
9	5	0	1	-1	0	0	7	+1	2	+2	3	-1	3	-1	3	0	11	+3
10	2	+2	3	+1	0	0	4	+3	12	+1	4	-2	3	+2	6	+2	11	-1
11	15	-1	2	0	11	+1	15	+1	5	+2	12	0	6	+2	8	-1	9	0
12	3	-1	1	-1	7	+3	9	+3	6	0	16	+1	14	0	6	-2	7	+1
13	11	+1	1	-1	9	+1	5	0	1	0	11	0	13	-1	7	+1	2	0
14	12	0	10	0	8	+1	7	0	1	0	13	-1	13	0	9	-1	4	0
15	1	0	3	+1	2	-1	12	0	5	+2	12	-1	12	0	7	-2	2	+1
16	10	-1	3	+1	4	0	9	0	14	-1	11	0	11	0	3	0	4	0
17	15	-1	2	0	5	0	6	0	10	+2	14	0	8	-3	3	0	1	0
18	13	0	2	0	4	0	2	0	111	+1	12	0	10	0	6	-1	0	0
19	8	-1	1	0	9	+3	2	0	12	0	12	-1	13	-1	3	-1	1	0
20	5	0	5	+1	5	0	9	+3	9	+1	12	-1	10	-1	8	+2	6	+1
21	1	0	5	-1	2	0	8	0	5	+2	14	-1	4	0	5	-1	13	+2
22	1	-1	8	0	0	+1	3	0	7	-1	11	-1	1	0	2	0	9	+1
23	12	+1	4	0	2	+4	5	-1	15	-1	4	-1	2	0	9	+3	13	+2
24	4	+2	2	+1	5	0	4	+1	10	+1	3	0	1	0	17	0	10	0
25	0	0	2	0	3	+1	11	+1	10	0	2	-1	7	0	13	+1	8	-1
26	1	-1	0	0	$2+1$	5	+1	7	+1	3	-1	4	+2	14	0	12	-1	
27	7	+2	9	+2	1	+1	12	-1	7	0	4	+1	4	0	8	+1	3	0
28	10	-1	9	0	6	+3	8	+2	1	0	2	0	16	+1	12	+1	2	0
29	2	0	2	0	7	+3	5	0	1	0	2	0	18	0	9	0	1	+1
30	6	+3	2	0	9	0	6	-1	3	+3	2	0	14	0	4	0	0	0
31		1	0			4	0	5	0			13	-1			0	0	

1	1	+4	3	0	3	+1	8	-1	17	-2	4	0	1	0	10	0	14	-2
2	3	-1	3	-1	9	+1	7	+1	11	+1	3	0	2	0	12	-2	13	-1
3	4	+1	6	-1	5	+1	14	-1	6	+1	2	-1	8	0	12	-1	16	-2
4	13	+1	8	-1	11	+1	11	-1	5	-1	1	0	11	+3	12	0	12	-1
5	10	-1	7	0	9	0	12	0	5	-1	3	0	15	0	10	0	11	-2
6	6	-2	7	-1	4	0	12	0	2	0	6	+1	15	-1	8	0	6	-2
7	1	0	2	+1	3	+1	10	-1	3	-2	7	0	9	-1	10	0	4	-2
8	2	+2	3	+1	5	-1	4	-1	0	0	12	+1	11	0	18	-1	12	-1
9	5	-3	3	0	4	-1	1	+1	1	0	11	0	13	0	16	-5	14	-2
10	3	0	1	+1	2	0	12	+1	2	+1	10	0	11	0	5	-2	13	-2
11	1	+1	5	-1	8	+2	14	-1	4	+2	7	0	10	+1	3	-1	12	-3
12	3	0	2	+1	11	0	2	0	7	-1	7	+1	9	0	5	0	10	-1
13	1	0	7	+1	1	-1	1	0	9	+1	11	-1	9	-1	16	0	12	-2
14	0	0	2	0	5	-2	1	-1	7	-1	8	0	1	0	12	0	11	-1
15	0	+1	2	0	1	-1	4	+1	12	-1	1	0	4	+1	10	-1	8	-2
16	$2+3$	1	+3	12	+1	8	-2	7	+1	1	0	6	-2	12	0	6	-1	
17	12	+1	15	+1	6	0	4	-2	12	-1	0	+1	6	0	12	-2	6	-2
18	5	+1	8	-3	3	0	3	-1	14	-1	1	0	10	+1	14	0	5	-1
19	3	0	5	-1	6	+2	2	-1	10	0	7	+1	8	0	13	+1	7	-3
20	14	+2	$2+1$	12	+1	5	0	2	0	11	+1	4	0	14	-1	4	-1	
21	12	+1	1	+1	5	0	11	-1	1	+1	11	0	8	-1	10	-3	11	-1
22	12	+1	1	+1	9	+3	4	-1	1	-1	11	-1	8	-1	2	0	11	-2
23	5	0	4	+1	13	-1	0	+1	5	+1	11	+1	3	-1	6	-2	7	-3
24	6	-3	4	+1	5	0	0	0	13	-2	11	0	1	+1	11	-2	3	-1
25	2	-1	7	+4	2	0	8	0	11	0	8	0	1	0	10	-3	7	0
26	9	-1	11	+2	2	+1	14	-1	4	+1	2	0	4	0	10	-2	14	-1
27	4	+1	6	0	2	0	4	+1	8	+1	4	+1	5	-1	2	0	14	0
28	5	+1	1	+1	1	+1	3	+1	12	0	10	+2	2	0	15	-1	15	0
29	2	0		14	+1	7	-1	6	+1	3	0	1	+1	14	0	17	-1	
30	4	-1		12	+1	10	+1	4	-1	1	-1	11	0	18	0	17	+1	
31	2	0		10	-1			2	0			8	0	20	0			

43 Oct 43 Nov 43 Dec				1944 Jan	Feb	Mar	Apr	Ma	Jun
1	$15-1$	120	$4+1$	10 +1	$1+1$	20	$7+1$	$14+3$	$2+1$
2	150	$3-1$	$10-1$	30	30	$5+1$	$18+2$	$12-1$	2
3	150	$1+1$	12-1				$11-1$	$5-1$	10
4	11 -1	10	100	$3-1$	$4+1$	$12+1$	12-1	$10+1$	$3+2$
5	$5-1$	7 -1	9-3	8 -1	$2+1$	$5+1$	120	90	$3+2$
6	20	130	$0+1$	$2+2$	$1+1$	$11+1$	120	100	$1+1$
7	90	$9-2$	$1+1$	20	$14+3$	$13+1$	$11-2$	$8+1$	$1+1$
8	13-1	7 -1	$2+1$	$2+1$	130	$11-1$	9-1	6 -2	-1
9	150	6-2	$5-2$	30	10 +2	$13-1$	$5+3$	$1+1$	$2+1$
10	10 0	50		$8+1$	$10+1$	$14+2$	12-2	1. 0	
11	-1	10		$13+1$	100	$8+1$	$7-1$	$2-1$	$2+2$
12	7 -2	$1+1$	10	120	9-3	120	50	20	
13	$3-1$	$1+1$	20	$13+1$	80	90	00	0 +1	$2+1$
14	$1+1$	20	$4+3$	$13+2$	160	$7+1$	0 O	10	$5+1$
15	$0+1$	$1+1$	$3+1$	$12+1$	110	$3-1$	$6+1$		$9+2$
16		$8-1$	$14+2$	120	$5-2$	$4-1$	$14+1$		$8-1$
17	7 -2	0 +1	$14-1$	$11-1$	20	0	$5-1$	10	$3+1$
18	$4-1$	$4+1$	11 -1	$10-1$	10	$8+3$	30	10	
19	5-2	$17+1$	150	8 -1	10	130	10	10	$2+1$
20	80	150	13 0	$6-1$	$9+1$	40	$2-1$	0 +1	6
21	4 -1	$14+1$	$11-1$	$3-1$	$5-1$	$3+2$		0	
22	11 -1	12-1	$10-1$	30		70	00	10	11
23	$6-1$	150	8 -1	30	20	$5+1$	0 O	$2+2$	$8+1$
24	150	$14+1$	40	30	$1+1$	$0+1$	$8-3$	7 -1	$2+1$
25	$14-1$	$15+1$	7 -2	$2+1$		$5+3$	40	$3+1$	$1+1$
26	$16+1$	150		$5+3$		$14+1$	$5-1$	$3+1$	$9+1$
27	130	15-1	30	70		$17+1$	7 -1	50	$6-1$
28	15-2	12-2	10	$5-1$	20	$6+3$	60	$2+3$	2
29	140	$12-1$	$5-1$	$3-1$	40	$12-2$	$5+1$	120	$5+1$
30	13-1	4 -1	$2+1$			$9-1$	$11-2$	6 +2	
31	14-1		80	$3+1$		$5+1$		$5+2$	

1	$\begin{array}{rrr}2 & 0 \\ 3 & -1\end{array}$	$3+1$ $8+3$	$\begin{array}{rrr}7 & -1 \\ 12 & 0\end{array}$	11 3 +1 +1	$\begin{array}{ll}1 \\ 1 & 0\end{array}$	$4+1$ $8+3$	6 6 + -	$2-1$ 6	
3	$2+2$	$15+1$	50	$10 \quad 0$	$3+1$	$6-1$	$5+1$	$4-2$	$6-1$
	$2+1$	$3-1$	$4+1$	40	$7+1$	$3-1$	$5+2$	$2-1$	$2-1$
5		$3+1$	$3+1$	$2-1$	$12+2$	$3+1$	20	90	10 +2
6	$2+1$	$4-1$	20	$6+3$	80	30	$3-1$		$9+1$
7	$4+1$	20	30	30	20	0 0	20	30	$5-1$
8	$1+1$	$3+2$	$5+1$	0 O	20	10	10	9-1	110
9	$6+2$	20	$3-1$	10	$4-1$	$3-1$	$6+2$	80	$3+1$
10	$3+2$	$5+1$	30	$3+2$	$5+4$	10	120	40	20
11	$2-1$	$6-1$	40	$13+1$	10	10	0	6 -1	14
12	$1+1$	60	50	50	$1-1$	10	$2+1$	4 -2	$16+1$
13	$2+1$	30	$3+1$	$6-1$	0	9. +3	40	00	$6-3$
14	$3+1$	$2+1$	$6-1$	$12+3$	$1+1$	$10-2$	10	$2+2$	7 -1
15	$5+1$			14 0		$4+4$	$14+3$	$11+1$	$17 \quad 0$
16	$4+2$	$2+1$	$2-2$	6 -2	10	$18+1$	8 -2	110	11
17	40	$2+1$	$1+1$	6 -2	$0+1$	$17+2$	$8+1$	$7+1$	
18	$2+2$	$10+3$	$5-1$	$5-1$	$4-1$	$10+2$	30	4-2	$6-1$
19	$4+3$	$4+1$	$0+1$	10	40	$4-1$	$6-1$	2 -1	$2-1$
20	$6+2$	20	$4+3$	$2+1$	10 +2	40	$6-2$	10	110
21	$4+2$	10	$10-1$	$2-1$	$0+1$	$6-2$	$2+1$	00	
22	$3+1$	$2+1$	$5+1$	$2-1$	$0+2$	$4+1$	$1-1$	$3+1$	$1-1$
23	$2-1$	$5+3$	$7+1$	$8+2$	10	20	$1-1$	$3+2$	$1-1$
24	0 0	$7+2$	120	100	$0+1$	$0+1$	00	30	$4+2$
25	$1-1$	$1-1$	60	$4+1$	$0+1$	$1-1$	00	$8-1$	
26	$1+1$	$2+1$	$7-1$	8 -2	30	$4+2$	$4+2$	$11+1$	
27	$1+1$	30	80	4 0	$0+1$	$14+2$	20	$9+1$	$12-1$
28	$1+1$	$10+2$	30	4 -2	0 +2	$8+1$	$7+4$	$4+1$	$16+1$
29	$2+2$	20	$4-1$	$1+1$	10	$6+2$	160		8 -1
30	$2+1$	5 -1	$13+2$	$2-1$	$3+1$	$10-1$	8 -1		10
31	$3+1$	$9+2$		$7-1$		40	10		10

1945 Apr		May 45 Jun 4		Jul 4	5 Aug	Sep	Oct	5 Nov	Dec
1	160	6 -1	$1-1$	$15-1$	$2+1$	20		$1-1$	00
2	9-2	7 -2	1 -1	60	100	30	$3-1$	$0+1$	20
3		8 -3	10	30	3-1	10		10	0 0
4	$3+2$	$3-1$	10	$8+2$	20	100	00	$3+1$	0 0
5	$10-1$	$3-2$	20	$9-1$	$4+2$	$4-1$	$5+2$	50	$2+2$
6	110	$3-1$	$11+1$	120		$3-1$	$1+1$	0	$6+2$
7	$10-2$	10	80	$5+1$	$3+1$	20	$5+2$	10	40
8	9-1	$2-1$	100	8 -2	$2+1$	$2+2$	$5+1$	$6+3$	8 -1
9	00	6 +2	$6+1$	$3-1$	10	20	$3-1$	$15+1$	7 -1
10		$6+2$		$1 .+1$	$0+1$			7-3	3-3
11	$13+2$	110	50	10	$2+1$	$7+1$		100	$1-1$
12	130	8 -2	20	$2-1$	20	$8-1$	$13+2$	$10-1$	10
13	8 -2	$5-1$	20	10	$6+2$	50	7 -2	$5+1$	$10+3$
14	$11-2$	50	10	10	$9+1$	$1-1$	60	30	180
15	8-2	$1-1$		$1-1$	$5+1$	1 -1	$3+1$	50	
16	20	$4-2$	10	$5+1$	$3+2$	30	$8+2$		
17	10	30	40	$8+2$	20	$14+2$	$5+1$	$5-1$	80
18	$2-1$	$6+1$	20	40	00	$15+1$	$4-2$	$1-1$	$2-1$
19	60	$5-1$	$2-1$	4 -1	0		$6+1$	0 +1	$9+2$
20	8 -2	40	30	$1-1$	00	$5-1$		$1-1$	120
21	10	40	10				20	$1+1$	$11-4$
22	$4+1$	$2-1$	0 +1	10	$5+5$	$2-1$		10	0
23	8 -2	$4-1$	10	$8+1$	$5+1$	0	10	$1+1$	$7+2$
24.	$9-1$	$5-1$	$1-1$	$4+1$	10	0 0	$16+2$	0	$9+1$
25	4 -2	$9-3$	$3-1$	10	$0+1$	$3+2$	150	$2-1$	$11+3$
26			$1-1$	$2-1$	10	$3-1$	10		12-1
27	10	40	7 -1	$0+1$	40	7 -2	$8+2$	$0+1$	120
28		$3-1$	$2+1$	70	$13+2$	$3-1$	$14-1$		12-2
29	$2+1$	$5-1$	$1-1$	50	$3+1$	$2+1$		60	
30	70	9 -1	$7+1$	$9-2$	10	9 -1			$3-1$
31		$5-1$		$1+2$	$1+1$				

	Jan	Feb	Mar	Apr	May	Jun	Jul	AuE	Sep
1	$6+2$	$1-1$	$12-1$	$10-2$	4 -1	$3-1$			-1
2	$4+3$	$5-1$	$9-2$	11 -2	$5-2$	$3-2$	$5-3$	$2-1$	5 -2
3	$17+2$	$6+1$		4 -1	$3-1$	0	$9-1$	2 -1	
4	160	6 +1	12 -2	3 -1	5 -1	30	$2-1$	$1-1$	9 -1
5	6 -2	8 -2	$12-2$	5 -1	$5-1$	50			7 -1
6		8 -3	9-2	$5-2$	15-2	70	$2-1$	4 -2	
7	$3+4$	$19+1$	50	$8-3$	14 0	15 -1	$14-1$	$11-1$	$10-1$
8	20	$19+1$	20	$5-1$	14-2	$13-1$	$9+1$	$3+1$	$6-1$
9		$9-3$	$7+3$	$14-2$	$16-4$	$10-1$	$10+1$		$7+2$
10	$2+1$	$10-3$	17 0	5-2	9-1		6 -2	$3-1$	$10-3$
11	$11-1$	4 -2	$13-1$	$2-1$	$15-1$	$7-2$	8 -4	120	6 -1
12	$5-1$	50	$1-1$	8 -1	$5-3$	12-1	$3-2$	$8-1$	7 -2
13	10	8 -2	$2-1$	110	$5-3$	9-2	$2-1$	40	4 -2
14	$1-1$	13-1	20	$12-1$	$2-1$	5 -2	$10-1$	16 -2	4 -2
15	$1+1$	$10-2$	$5+2$	17 -1	$2-1$	4 -1	6 -1	$11-2$	$3-2$
16	$4-1$	4 -1	$1+1$	5 -2	4 -2	$10-1$		$11-1$	$13+1$
17	$6+1$	4 -2	110	$3-2$	8 -2	$12-2$	$7-1$	$11-1$	$13-1$
18	$7+1$	30	40	4 -2	8 -2	$10-2$	140	20	$19+1$
19	6 -1	$12+1$	$2+1$	$2-1$	10	$14-2$	12 -1	4 -1	$17-1$
20	10	$11+1$	7 -1	$2-1$	$6+2$	$7-3$	20	20	$8-3$
21	0 +2	$16-1$	$7-2$	$1-1$	$13-1$	$9-2$	6 -1	$1-1$	$11 \quad 0$
22	$7-1$	$10-1$	$12+1$	90	16 -1	7 -2	7 -1	0 O	[120]
23	90	110	110	190	$14-1$	20	$10-1$	$1-1$	$20-1$
24	$13+1$	6 +1	190		$11-1$	$2-1$	$2-1$		$11-3$
25	$7+1$	7 -2	0		9-2	$6-1$	$10-3$	$3-1$	2 -1
26	$10-1$	4 -2	$16-1$	$5-2$	$5-1$	7 -2			3-2
27	20	0 0	13-2	4 -1	2 -1	$10-2$	$20-1$	3 -1	14 0
28	$1+1$	10	22 0-1	7 -2	5 -2	80	$10-1$	$2-1$	$18-1$
29	$4-1$		$14-1$	6 -2	4 -1	150	$17-2$	$1-1$	$14-1$
30	$3-1$		$3-1$	2 -1			$13-1$	$3+1$	$14-2$
31	30		$8-1$		9-3		4-2	$16-2$	

1946 0ot 46 Nov 46 Dec 1947 Jan 47 Feb 47 Mar 47 Apr 47 May 47 Jun

○ O
NOWGCDV INGVA NNWGTN OOGED JNGVA JWOUTW
じ+ +

1948 Apr 48 May 48 Jun 48 Jul 48 Aug 43 Sep 48 0ct 40 Nov 48 Dec

さ゚＋＋＇
N゙
＋

1949 Jan 49 Feb 49 Mar 49 Apr 49 May 49 Jun 49

1949 Oot 49 Nov 49 Dec				$\begin{aligned} & 1950 \\ & \text { Ja Fe Mr } \end{aligned}$	Ap My Je	J1 Au Se	Oo No De	$\begin{aligned} & 1951 \\ & \mathrm{Ja} \mathrm{Fe} \end{aligned}$
1	$5+1$	$13+2$	$6-1$	6	15	10	1716	
2	$5-1$	$13+1$	$2-1$	125	141110	102	189	10
3		$11-2$	$6+1$	11	13159	1116	$16 \quad 64$	9
4	$10+2$	50	$8+1$	103	13114	$13 \quad 515$	1615	36
5		100		53	16114	$\begin{array}{llll}9 & 317\end{array}$	$\begin{array}{lll}14 & 7 & 4\end{array}$	10
6	110	$5+1$		58	$\begin{array}{llll}13 & 6 & 14\end{array}$	$6 \quad 615$	122	214
7	$17 \quad 0$	$2-1$	$1-1$	811	106	61510	1306	6
8	$14+1$	00	20	72	$\begin{array}{llll}4 & 2 & 4\end{array}$	31815	$\begin{array}{lll}7 & 4 & 7\end{array}$	11
9	10-1	$4+1$	$12-1$	7	012	$\begin{array}{llll}7 & 14 & 9\end{array}$	25	12
10		$8+1$	$2+1$	12	410	$\begin{array}{llll}5 & 15 & 11\end{array}$	14	
11	100	120	$1-1$	$\begin{array}{lll}5 & 2 & 1\end{array}$	48	131311	9	1012
12	$4+1$	$9+1$	0	$\begin{array}{llll}3 & 3 & 2\end{array}$	102	15136	1211	1014
13	$8+1$	60	$1-1$	$\begin{array}{lll}5 & 1 & 2\end{array}$	$6 \quad 91$	1278	61114	11
14	$18+1$	$7+1$	$8+2$	1036	292	611	$15 \quad 614$	7
15	20 0	$5+2$	$4+1$	6411	1011	67	$\begin{array}{lll}12 & 1 & 7\end{array}$	10
16	170	$7-1$		$6 \quad 24$	7	10	1536	10
17	9-1	10	20	1		111	1284	6
18	40	$5+2$	10	13	$\begin{array}{llll}9 & 2 & 4\end{array}$	2812	7	3
19	$9-1$	$14+2$	$2+2$	$\begin{array}{llll}7 & 3 & 18\end{array}$	122	21912	227	87
20	60	$15-2$		1118	124	$\begin{array}{llll}3 & 19 & 14\end{array}$	$\begin{array}{lll}3 & 2 & 7\end{array}$	5
21	$6-1$	$9+1$	$5+3$	101812		510	2	10
22	$9+1$	$2+2$	$4+1$	61211	2106	631	1113	1615
23	$9+1$	$4+2$	$5+3$	$\begin{array}{llll}3 & 16 & 3\end{array}$	91311	0412	414	1117
24	$10-2$	30	80	151512	13715	$\begin{array}{llll}13 & 215\end{array}$	714	614
25	3-1		$4+1$	1297	5610	$14 \quad 214$	1613	410
26	$3+1$	$1+1$	20	04	28	2	1713	$7 \quad 9$
27	$14+1$	$7+1$		88214	216	5	11510	1016
28	$13-1$	2. -1	$5+1$	76	7172	510	18157	1016
29	$8-1$	130	$4+1$	8	91114	5111	17114	8
30	4-1	$14+1$	$7+2$	4	$13 \quad 914$	69	16	9
31	$6-2$		$9+2$	10		74	16	16

Table 3a. Monthly and annual averages of Cp, multiplied by 100 .

Table 3b. Monthly and annual averages of the differences (Ci - Cp), multiplied by 100.

	Ja Fe Mr	Ap 1iny Je	Jl Au Se	Oc No De	Year
1932			$\ldots+17+16$	$+24+18+24$	+17
1933	$+15+16+14$	+12 +11 +15	$+19+17 \quad \ldots$	
1940	$+11+6+1$	$+5+9+9$	$+7+10+7$	$+8+11+7$	8
1941	+ 4-3-2	$-3+4+11$	$+4+4+2$	$+7+7+9$	+ 4
1942	+ $7+6-2$	+ $7+2+10$	$+5+5-3$	$0+1+4$	+ 3
1943	$+3+5+3$	$-30+2$	0-9-14	-6-1-1	-2
1944	+1 + $2+6$	$-3+4+6$	$+9+7+1$	+1+6+6	+ 4
1945	+ $20-1$	- $4-7-1$	$0+7-1$	$+4+1-1$	
1946	+2-8-6	-12 $-13-11$	-11-7-11	-12-8-5	-9
1947	$+1-2-8$	-14-5-8	-9-11-11	-11-4-0	
1948	$+4+4+4$ $-4+1-6$	$0-6+6$ $-2-1-3$	$+4+4-1$ $+9+1-2$	- 3	0
	+ $3+1-1$	erage for th $-4-1+2$	ten years 1 $+2+1-3$	40 to 1949 $-1+2+3$	0

Table 3 lists 3 days with $C p=2.2,7$ with 2.1 , and 7 with 2.0 If, in addition to the days beginning at midnight Universal Time, intervals of 24 hours with other limits are admitted, higher values than 2.2 have occurrea, e.g. the 24 hours beginning 1940 March 24, 12.00 U.T., would get $\mathrm{Cp}=2.3$, and the 24 hours beginning 1941 Sept. 18, 9.00 U.T., would get $C p=2.4$.

It should not be forgotten that the characterization of an interval of 24 hours by a single figure for the whole earth has its limitations and requires a compromise, especially if the day is partly quiet, partly disturbed. It is therefore reoommended to use as much as possible the indices for three-hour-intervals, for a local measure of activity, the K-index provided by the nearest observatory, or for the Earth as a whole, the planetary Kp-index. But there is a demand for an objective measure of activity for a whole day and for the whole earth, and this shall be met by Cp. - If a local daily measure of activity is desired, a figure Ck will be suggested in Note 3.

The method used to introduce C, namely, assimilating of frequency distributions by ranking, has been applied before in the standardization of K [2]. See also Note l for a transitory stage (daily indices B and Bp) now given up. In Note 2, typical Kp-values leading to various figures $C p$ are tabulated.

The monthly and annual averages given in Tables $3 a$ and $3 b$ will be referred to in Note 5 .
5. General relation between Ci and Cp. Tables 4 and 5 contain practically the same information in different arrangement. The correla-tion-coefficient between Ci and Cp is +0.962 .
Table 4. Correlation-Table Ci..Cp for the 3653 days, 1940-49.

For the 3653 daily values of Ci , Cp , and ($\mathrm{Ci}-\mathrm{Cp}$), the arithmetic means are $0.646 \quad 0.643 \quad+0.003$; the standard deviations are $0.4620 .458 \quad 0.126$. The last two columns of Table 5 show that the scattering of ($\mathrm{Ci}-\mathrm{Cp}$) is lowest at the two ends of the scale; but at no level the standard deviation of (Ci - Cp) exceeds 0.15 .

The linear equations of regression according to least squares adjustments, are,

$$
\mathrm{Ci}=0.970 \mathrm{Cp}+0.021+\mathrm{Ri} \quad \mathrm{Cp}=0.954 \mathrm{Ci}+0.028+\mathrm{Rp}
$$

the standard deviations of the residuals are, for Ri, 0.126 and, for Rp, 0.125 ; the residuals of the equations $C i=C p+R$, with $R=C i-C p$,
have the standard deviation 0.126 , praotically not higher than those for the least - square residuals, Ri and Rp .

Table 5. Frequencies of the excess $\mathrm{Ei}=10$ ($\mathrm{Ci}-\mathrm{Cp}$), for fixed values of Cp , for the 3653 days, 1940-49.

The last line of Table 5 shows that the differences ($\mathrm{Ci}-\mathrm{Cp}$)
are, on 4 out 5 days, not higher than 0.1 , more exactly

$(C i-C p)$	$=0.0$	for 1243 days, or 34 per cent of all days,	
	$=-0.1$ or +0.1	1654	45
	$=-0.2$ or +0.2	579	16

The remaining 26 days (about 7 out of 1000 days) are listed in Table 6 .
Table 6. Days with ($\mathrm{Ci}-\mathrm{Cp}$) numerically greater than 0.3 , from the years 1940-49.

Table 7. Selected days differently oharacterized by $C i$ and $C p$.
($\mathrm{Ti}=10 \mathrm{Ci}, \quad T p=10 \mathrm{cp}$).

Pairs of days with equal Ci , different Cp			Pairs of days with different Ci , equal Cp		
Date	Ti Tp	Kp-indices	Date	Ti Tp	Kp-indices
44 No 28		$0+00000+001-201+$	40 Je 29	$\begin{array}{ll} 6 & 2 \\ 0 & 2 \end{array}$	$\begin{array}{ll} 0+1+1-0+ & 1+10302- \\ 2+1+3-0+ & \text { lol-O+1+ } \end{array}$
43 Ja 9		$303-3+3+1-1+1-10$	46 No	02	$2+1+3-0+101-0+1+$
43 Ja		$0000000+001+3-30$	41 Je 9		0+1-1+4-3-1+2-2+
47 Ap 15		40403-30 3+302+3-	440028		2-3-3-2-201+2+2-
46 Ja		0+1+1-10 20203020	49 Fe		$200+1+1+2+2-405-$
45 De 21	711	506-3+30 2ololol+	46 0c 12		3+4-401- 1-10103-
41 Je	10	$0+1-1+4-3-1+2-2+$	42 No 23		202-2-2-3040305+
47 Mr 24	1013	5-605+3-2+3-3-2+	4200		4+3+3+2-3+301+2+
49 Fe	12.7	$200+1+1+2+2-405-$	40 No 12	1611	$2+0+2+5-3+3+405+$
46 My	1216	4+5-5-4+606-6-5-	45 De 21	711	506-3+30 2ololol+
40 No 12	1611	$2+0+2+5-3+3+405+$	450024	1816	4-4-4+6-605+605+
47 Mr	1618	$7+707+7-403+5030$	43 Au 9		
$\begin{array}{\|rrr\|} \hline 44 & \text { Ap } & 2 \\ 46 & \mathrm{~J} & 27 \end{array}$	$\begin{array}{ll} 20 & 18 \\ 19 & 20 \end{array}$	$\begin{aligned} & 4+50808+60405040 \\ & 9-9-907-5+4-4-2+ \end{aligned}$	\leftarrow This day underrated by Ci		
$\begin{aligned} & \text { All days with } \\ & \mathrm{Ci}=0.0, \mathrm{Cp}=0.2 \text { or } 0.3 \end{aligned}$			All days with$C i=0.2, C p=0.0$		
44 Se 16	0	0+202-1- 1+201-1-	40 Ja 26	0	$0+00000+0+1-1+2-$
46 No 3	0	2+1+3-0+ 101-0+1+	41 No 15		$1-000+1-1-1-1010$
47 Fe 13	02	101+2-2- $2+10100+$	44 No 22		$\mathrm{O}+00000+0+201010$
45 De 10		2-301+2- $1+100+0+$	$\begin{array}{ll} 44 & \text { No } 28 \\ 16 \\ \mathrm{Ta} \end{array}$		$0+00000+001-201+$ $00000000 \text { 1-101+2+ }$
$\mathrm{Ci}=0.3, \mathrm{Cp}=0.6 \text { or } 0.7$			$\mathrm{Ci}=0.6$ or $0.7, \mathrm{Cp}=0.3$		
$43 \mathrm{Ja} 24 \mid 3613+3-2-30 \quad 2+2-2+20$			$410010\|638\| 0+1-101-1+203+2+$		
45 Mr 13		4-20203+ 301+101-	42 au 30	$\begin{array}{ll}6 & 3\end{array}$	$1-10101+2-2+3+10$
46 De 3		4+302+3-1+1+100+	46 Ja 7		Ool $+1-1020203020$
47 0c 22	3	304-302+ 3-1+102-	47 No 30		$101+2-20$ 1-2-3-3-
46 0c 12	3	3+4-401-1-10103-	48 De 23	63	$200+201+2-103-3-$

6. Disoussion of days with large differences ($\mathrm{Ci}-\mathrm{Cp}$). Table 7 is arranged to exhibit the essential reasons for the differences between Ci and Cp .

The comparison with the 8 values of $K p$ for each day in Table 7 shows that, in general, $C i$ is higher than $C p$ for such Greenvich days which are disturbed in the noon or evening hours, while Ci is lower for $C p$ if the main disturbance is restricted to the first three-hourintervals (Eighths) of the Greenwich day, up to about 09 Universal Time. The reason seems olear: For the great number of European observatories the level of activity is generally low in the early morning hours, and high in the evening. This well-known daily variation of activity, numerically expressed in the Conversion-Tables K into Ks (IATME Bull. 12b), leads to an "European bias" in C, which is reflected in Ci (see also Note 4).
7. Systematic changes of (Ci - Cp). An inspection of the excess-values $\mathrm{Ei}_{\mathrm{i}}=10$ (Ci - Cp) in Table 3 shows that there are significant changes in Ei from year to year. Thus, plus-signs prevail in 1932/33 and in 1940, and minus-signs prevail in 1946. For a closer study, it must be taken into account that Ei may depend systematically on Cp; in order to make the groups of days large enough in each sub-division, five levels of aotivity were kept separate, namely $10 \mathrm{Cp}=\mathrm{Tp}=(0$, 1 ,or 2); $(3,4,5) ;(6,7,8) ;(9,10,11,12) ;(13$ to 20$)$. The Prequencies of $\mathrm{Ei}=$ 10 ($\mathrm{Ci}-\mathrm{Cp}$) in each group were counted for each quarter year. As a sample the complete table for one level of activity ($\mathrm{Cp}=0.9$ to l.2) is reproduced here in Table 8. The shift in the frequencies from the Polar Year 1932/33 over 1940 to $1946 / 47$ is quite obvious.

Table 8. Frequencies of the excess $\mathrm{Ei}=10$ ($\mathrm{Ci}-\mathrm{Cp}$) for all days with $\mathrm{Cp}=0.9$ to 1.2 , for quarters (JFM $=\mathrm{Jan}$. Febr.March, etc.) and years, Polar Year 1932/33, and years 1940-49.

Ei=	-3	-2 -1	0		+ +2	+3		+4 +		Sum	Ei=	-4	-3		-2 -1	0		+1 +2	+3	Sum
32 JFM	-	- •	2			3			2	16	45JFM	-				6		41		13
32 AMJ	-	- \cdot	4			5				20	Alij	.	1			3		1	-	12
${ }^{33}$ JAS			1			5		3	2	13	JAS	i			$\begin{array}{ll} 1 & 2 \\ 1 & 2 \end{array}$	3	I	$1{ }^{1} 1$	2	7
	-		7		$5{ }^{2} \times 11$	19			4	59	Year	1				15		$\begin{array}{ll}1 & 1 \\ 7 & 2\end{array}$	2	43
40JFM	-		7		25	2				18	46 JFM		2					3		18
AMJ		- 1	5		43					13	AMJ		1		86	2				17
JAS		- 1	5							15	JAS		3		110			2		18
OND	.		7			2				22	OND		3		$3 \quad 5$,		51	-	19
Year	.	4	24		1916	4		-	1	68	Year	-	9		1725	10		101	.	72
41JFM			7		$7 \begin{array}{ll}7 & 2\end{array}$					26	47JFM				45	8		3		20
AMJ	1		6			.		-	-	18	AMJ	1			97	4				21
JAS	-	1	6		6	-			-	19	JAS				5	2		2		21
OND	-	1	3			.				11	OND	.			$5 \quad 2$	4			-	14
Year	1	614	22		2011	.		.		74	Year	1	7		$23 \quad 21$	18		6		76
42JFM	-	2	10			1		-		20	48JFM					8		54		18
AMJ	-		5							15	AMJ				$\begin{array}{ll}3 & 6\end{array}$			41		19
JAS	i	- 6	9		5	2				24	JAS					$\begin{aligned} & 8 \\ & 7 \end{aligned}$		10 .		23
OND	1	- 5	6		3	2				17					28			51	2	25
Year	1	214	30		176	6		-	-	76	Year	-	2			27		246	2	85
43 JFM	-		2		8 1	1				15	49JFM		1			3			1	28
AMJ	;		9					-	-	24	AMJ		-		$1 \begin{array}{ll}1 & 7\end{array}$	4		11		14
JAS	3	79	10		2	1			-	32	JAS		-		- 1	7		4.	1	13
OND	1	29	5		- .	-			-	17	OND				24	5		$3 \quad 3$		17
Year	4	928	26		17	2		-	-	88	Year		1			19		137	2	72
44JFM	1		6							19										
AMJ	.	31	7		21	-														
JAS OND	-	i 1	2		i 2	2				10										
Year	1	510	17		97	3				52										

All years 1940 - 1949.

$\mathrm{E} i=$	-4	-3	-2	-1	0	+1	+2	+3	+4	+5	sum
2	27	82	165	208	142	58	21	.	1	706	

The average differences ($C i$ - Cp) for the 5 levels of activity are given in Table 9. Main result: Compared with Cp, the average Ci was, in 1932/33, too high by 0.07 to 0.26 units; in 1940, too high by 0.06 to 0.09 units, and, in 1946 and 1947, too low, as much as 0.11 units of $C i$ or $C p$. One may say that $C p=1.0$ was expressed, in 1932/33, by $\mathrm{Ci}=1.2$; in 1940, by $\mathrm{Ci}=1.1$; in 1947, by $\mathrm{Ci}=0.9$.

Table 9.

Average differences ($C i$ - Cp), expressed in one hundredth unit of Ci or Cp, for years and quarter years (JFM = January, February, March, etc.) for the five levels of activity:

Level:	Years											Seasons				
Cp	32/33	40	41	42	43	44	45	46	47	48	49	JFM	AMJ	JAS	OND	
0.0 to 0.2	+ 7	+6	+5	+3	+4	+ 4	0	- 4	- 1	+2	0	+ 2	+ 1	2		+ 2
0.3 to 0.5	+22	+8	+5	+2	-2	+ 5	0	-10	- 3	+4	+2	+1		+ 2	+	+
0.6 to 0.8	+25	+8	+4	+5	-6	+ 2	-1	-9	-8	+2	+1	+1	-		- 1	0
0.9 to 1.2	+21	+9	+2	+3	-4	+2	-2	-10	-11	+1	-1	+1	-4	-2	0	- 1
1.3 to 2.0	+26	+6	+2	+1	-4	+12	+8	- 7	-11	-2	0	+ 2		- 6		-1

The seasons (Table 9) have little systematic influence (less than o.l unit) on the average ($\mathrm{Ci}-\mathrm{Cp}$), apart from somewhat smaller values for the higher levels of Ci in northern summer. The monthly averaces for ($C i-C p$), in the bottom line of Table 3 b , are insignificant, not above a few hundredths of a unit of C. They show a trace of the wellknown semi-annual wave in magnetic activity - so clearly expressed in the bottom-lines of Tables $3 a$ and 18 -, with a reversed siEn in (Ci - Cp), in keeping with the tendency of Ci to shift its standard opposite to the general level of activity.

Shifts in the stendard of Ci are important enough to be demonstrated by two more examples. Table 10 shows the number of days with $\mathrm{Cp}=0.9$, as distributed according to Ci , for four years. Ci, in 1932/33 compared with 1947, was rated too high by more than 0.3 units. In 1949, no appreciable systematic difference appears between the levels $\mathrm{Cp}=0.9$ and $\mathrm{Ci}=0.9$.

$$
\begin{aligned}
& \text { Table } 10 . \\
& \text { Frequencies of } \mathrm{Ci} \text { on days with } \mathrm{Cp}=0.9 \\
& \text { in selected years. }
\end{aligned}
$$

| Year | $\mathrm{n}=$ | Ci $=0.5$ | 0.6 | 0.7 | 0.8 | 0.9 | 1.0 | 1.1 | 1.2 | 1.3 | 1.4 | Average Ci |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $1932 / 33$ | 15 | . | . | . | . | 1 | 3 | 3 | 7 | . | 1 | 1.13 |
| 1940 | 26 | . | . | . | 1 | 5 | 11 | 8 | 1 | . | . | 1.02 |
| 1947 | 19 | 1 | 2 | 6 | 2 | 6 | 2 | . | . | . | . | 0.78 |
| 1949 | 29 | . | 1 | 6 | 5 | 6 | 8 | 2 | 1 | . | . | 0.88 |

Fig. 1 shows the two correlations between Ci, Cp for the 396 days of the Second International Polar Year 1932/33, and for the 365 days of the year 1946. The number of days for each combination (Ci, Cp) (e.g., in 1932/33, 18 days with $\mathrm{Ci}=\mathrm{Cp}=0.0$, 38 days with $\mathrm{Ci}=\mathrm{Cp}=$ $0.1,17$ days with $\mathrm{Ci}=0.1, \mathrm{C}=0.0$ etc.) is indicated by symbols, and the reference-line $\mathrm{Ci}=\mathrm{Cp}$ is drawn. In $1932 / 33$, most symbols lie above the line $\mathrm{Ci}=\mathrm{Cp}$ (i.e., Ci was too high), in 1946, most symbols lie below the line (i.e., Ci was too low).

It should be added that such large shifts of (Ci - Cp) are certainly not due to Cp. Whoever has worked with K-indices for nontropical observatories will agree that any uncertainty remaining in Kp , as the basis of Cp , is restricted to the lowest levels, Oo , $\mathrm{O}+$ or l-, say; such an extreme shift at the level Cp $=0.9$ from $\mathrm{Ci}=1.4$ (for 1933 Jan.22) to $\mathrm{Ci}=0.5$ (for 1947 April 15) could never have occurred in $C p$, since $C p=1.4$ (see Table 13) corresponds to $K p=5-$, while $C p=0.5$ corresponds to $K p=2+$, two levels of K which are much too far apart to merge in the average for 88 indices (11 observatories, 8 intervals).

Systematic shifts in (Ci - Cp) tend to blur the correlation (Ci, Cp). This is easily seen from Fig.l: Superposition of the two diagrams for $1932 / 33$ and for 1946 would give a much wider scattering. Numerical data follow:

	$1932 / 33$	1946	$1932 / 33$
	396	365	761
Number of days	0.65	0.61	0.63
Average Ci	0.48	0.70	0.59
Average Cp	$\mathbf{+ 0 . 1 7}$	-0.09	+0.04
Average (Ci - Cp)	0.49	0.49	0.49
Standard deviation of Ci	0.41	0.48	0.45
Standard deviation of Cp	0.15	0.12	0.19
Standard deviation of (Ci - Cp)	0.15	+0.97	+0.92

8. Causes for shifts in the standard of ci: Two main causes are obviously possible: Every change in the membership of the C-observato-ries-addition of new stations as well as termination of old stationsmay alter the average $C i$ in as much as the standards of the individual C at these observatories differ.

If the C's for three observatories furnishing many twos like Tr , Lo, RS were replaced by the C's of three stations furnishing many zeros like He , Ch, Am, the average Ci for 1949 would already be depressed by 0.1 unit. This would occur even if all other stations kept their individual standards faithfully during their collaboration.

The other oause for shifts in Ci might be a ohange in the standard of C at individual stations, either gradual in the course of the years, or abrupt with a change in the observer or in the scaling practice.
Table 11. Average characters C, for days with $C p=0.5$ and for days with Cp $=0.9$, given by 11 observatories designated A to L , in 5 selected years.
$\mathrm{n}=$ number of days with $\mathrm{Cp}=0.5$ or 0.9 .

Year	n	A	B	C	D	E	F	G	H	J	K	L
$C p=0.5$												
1932/33	27	0.8	0.5	0.4	0.6	0.3	0.1	1.0	0.6	1.0	1.3	1.0
1940	28	0.0	0.0	0.2	0.0	0.3	0.1	0.6	0.1	0.4	1.5	1.0
1943	24	0.0	0.1	0.0	0.0	0.1	0.0	0.4	0.2	0.5	1.3	1.0
1946	34	0.0 0.0	0.0 0.2	0.0 0.0	0.0 0.0	0.1 0.0	0.0 0.0	0.4 0.5	0.0	0.6 0.8	1.1	1.0 1.0
$C \mathrm{P}=0.9$												
1932/33	15	1.0	0.9	0.9	1.0	0.7	0.5	1.7	1.0	1.2	1.9	1.0
1940	26	0.5	0.8	0.8	0.7	1.0	0.5	1.3	0.5	$0 \cdot 9$	1.9	1.0
1943	12	0.2	0.7	0.3	0.5	0.8	0.2		0.7	1.1	1.8	1.0
1946	20	0.0	0.0	0.0	0.2	0.6	0.1	1.2	0.6	1.0	1.7	1.0
1949	18	0.1	0.6	0.0	0.6	0.4	0.0	1.1	0.4	1.0	1.9	1.0

Such shifts of stations-standards of C have occurred in a surprising number of cases. A typical sample, from more extended studies, is shown in Table 1l: For eleven stations - whose names are replaced by letters A to L since no inducement for further enquiries is intended -, and for 5 years, the characters C for all days with $C p=0.5$ were averaged for each station, and the same was done for all days with $C p=0.9$. An inspection of Table 11 - with the shooking changes in station-standards by as much as one whole unit of C - will demonstrate how precarious the basis of Ci actually is.
G. van Dijk finished a detailed discussion [9] on the activity in the year 1930 - resumed recently by H.H.Howe [5] - by the conclusion. ...that the standard of oharacterisation was stable in the investigated period 1921 to 1934, so that ci can be used as a measure of magnetic activity, not only for intervals of weeks and months, but also for intervals of years."

The evidence given in our $\oint \oint 6$ to 8 is, however, rather convincing in tracing quite definite changes in the standard of Ci during the years 1932 to 1949, whioh disoredit monthly and annual means of Ci. (See also Note 5).

9. Statistical aspects of Ci. It is of interest to recall the concep-

 tion of the international oharacter figure Ci as envisaged in 1905 by Adolf Schmidt [4]. He vigorously rejected all proposals to make any numerical prescriptions for the method of assigning the charaoters $C=0,1,2$; on the contrary, that method was left entirely left at the discretion of the directors of each observatory. It is true that G. van $\operatorname{Dijk}[9]$, who was in charge of the derivation of Ci up to 1939, occasionally wrote letters to such observatories whose standards of C differed too much from that of most observatories; but otherwise, Schmidt's principle of estimating C ad libitum has been adhered to until to-day.Schmidt's attitude was due to his belief (now refuted by the K index) that objective numerical measures of activity, applicable to all observatories, could not be provided without an unjustified amount of labor. He realized, of course, the psychological reasons for dangerous shifts of standards, but, fortunately, the consequences of that arbitrariness have been less disastrous than they might have been. In fact: those evil spirits which have so often played havoc among geophysical statistios, have, in the past, had meroy on geomagnetioians, in providing them with a good series of Ci whose defects (§§§ 6-8) are small oompared with its merits.

How miraoulous this result is, has been shown by Table ll. Another aspect is given by some.simple considerations: Assigning characters $0=0,1$, or 2 for a year (say, 1949) at a single station is equivalent to "ranking" the daily magnetograms in the order of their activity, and to choose two limits, an upper one for $C=0$, and a lower one for $C=2$, much as desoribed by H.H.Howe [5]. Imagine now, that all observatories would agree to choose those limits so that everywhere, the days in 1949 with $C=0,1$ and 2 in 1949 should number (say) $100: 200$: 65. Because of the high correlation of magnetic activity at different stations, the ranks given to each day would not differ much from station to station. The majority of days would then be classified alike at all stations, so that, in the average for all stations, 80 days (say) would have $C i=0.0,150$ days $C i=1.0$, and 50 days $C i=2.0$, and only the remaining 85 days (say) would have intermediate values of Ci. This, of oourse, would be highly indesirable, beoause Ci would then fail to distinguish neither the really quiet days nor the days with great storms.

Fortunately (!), the observatories disagree heartly in the percentages of $\mathrm{C}=0$ or 2: for instance, in 1949, the number of days

With $C=$	0	1	2	
Was for Lovö	30	139	196	days, average $C=1.45$
for Abinger	36	299	30	days, average $C=0.98$
for Honolulu	337	24	4	days, average $C=0.09$

These great differences in "sensitivity" of the observatories cause that customary fine gradation in Ci, as shown, e.g., in the frequencies of Table 4 (See also mable 17)。

A few possible modes how the Ci-scheme might have worked will be demonstrated for the year 1949: Three groups, of 10 observatories each, were selected, with many twos (sanguine), with many ones (equable) and with many zeros (impassive). The observatories, and the average percentages of the number of characters $C=0,1,2$ assigned in 1949 by each group, are:
Sanguine group: Tr So Lo RS Me Wi Ma Ag Eb Ks, 0:1:2 $=20: 49: 31$. Equable group: Co Le Es Sw Ab CF Na Tl Ka Pi, $0: 1: 2=31: 60: 9$. Impassive group: Ni Ch ZS SJ Ho Hu El Ap Wa Am, 0:1:2 = 76:22: 2. The average characters of the year 1949 for the three groups are 1.11, 0.78 , and 0.26 (see also Note 5, Table 17).

Fig.2. Various kinds of daily magnetic character-figures, 1949 April 1 to June 30. $\mathrm{Ci}=$ International, $\mathrm{Cp}=$ planetary; and average daily characters for three groups of ten observatories each, preferring $C=2$ (sanguine), $C=1$ (equable), or $C=0$ (impassive).

Fig. 2 shows the agreement between $C i$ and $C p$ just as clearly as their good gradation. The average characters for the three sensitivity-
groups show the features to be expected; of the 91 days, the following numbers had

| Character figure $=0.0$ to 0.2 | 0.8 to 1.2 | 1.8 to 2.0 | 0.3 to 0.7 , or | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| for Ci | 18 | 18 | 2 | 1.3 to 1.7 | |
| for Cp | | 53 | | | |
| for "Sanguine" group | 15 | 4 | 18 | 2 | 56 |
| for "Equable" group | 15 | 30 | 13 | 44 | |
| for "Impassive" group | 65 | 37 | 5 | 36 | |

There is an analogy to photographic emulsions : The picture of the ohanges of magnetio aotivity from day to day as given by Ci or Cp, has excellent half-tones as well as good contrasts; the sanguine group is somewhat "over-exposed", the impassive group-"under-exposed", while the equable group gives a "grey" pioture.

All three sensitivity-groups agree, with Ci and Cp , on 2.0 for 1949 May 12, and, with Ci, on 0.0 for 1949 May 18. For the latter day, Cp $=0.1$, because the 8 Kp -indices $0+1-1-101-1-1+l+$ lead to $G=28$, above the lower limit $G=23$ for $C p=0.1$. In this oase, $C p$ is more sensitive against small disturbanoes then Ci (Note 2).

Additional Notes.

Note 1: The daily sum of K-indices, and the indices B and Bp. Some tables of individual K-indices as well as of Kp-indices give daily sums of the 8 indices. Those sums serve to check the entries, and to piok out quiet and disturbed days. But neither that sum nor the simple average of the eight K-indioes can be regarded as adequate measures of activity for the day. The K-index is, namely, roughly proportional to the logarithm of the three-hour-ranges ; a day with 8 intervals $K=1$ would certainly be considered quieter than a day with six 0's and two 4 's, or with seven $0 ' s$ and one 8 , all three days providing the simple K-sum 8.

This has been the reason to introduce [6] the daily index B. By means of a key similar to Table 1 , every K-index was transformed into an equivalent range, the average of those ranges for the 8 intervals of the day was computed, and that average range, by an inverse applioation of the key, was re-transformed into the K-scale and named B. Similar weighted averages - with the weights g given here in Table lwere used to provide daily planetary indices Bp, on the same soale of 28 steps as Kp. In Table 12 (a precursor to Table 2), the upper limits of G for each step of $B p$ are written behind each value of Bp. Table 12. Upper limits of daily sums G of g for daily indices $B p$.

Bp	G	Bp	G	Bp	G	Bp	G	$B p$	G
		$2-$	52	$4-$	196	$6-$	588	$8-$	1544
00	8	20	64	40	240	60	692	80	1772
$0+$	19	$2+$	84	$4+$	288	$6+$	820	$8+$	2144
1.	28	$3-$	108	$5-$	344	$7-$	972	$9-$	2800
10	36	30	132	50	412	70	1144	90	\cdots
$1+$	44	$3+$	160	$5+$	492	$7+$	1332		

These Bp-indices were given for 1932/33 (IATME Bull. 12o). They were also computed for all days of 1940-1949 and used in the assimilation of the Cp-scale to the frequency-distribution of Ci .

Figure 3. Comparison of scales.
The 28 steps of Bp gave, at the lower and upper ends of the scale, a. somewhat more detailed classification than the 21 steps of Ci (see Fig. 3). In 1932/33 and 1940-49, the lowest level $\mathrm{Bp}=00$ was reached on 8 days only:

1933 Febr. 17; 1940 March 15, March 18, Dec. 8; 1944 Nov. 13;
1945 Jan. 24, Oct. 11, Dec. 4.
All these days have $\mathrm{Cp}=0.0$ (of course) as well as $\mathrm{Ci}=0.0$, except 1940 March 15 with $\mathrm{Ci}=0.1$.

On the other end of the scale, $B p=7+$, which has nearly the same lower limit in G as $C p=2.0$, occurred, in the 10 years 1940-1949, on 12 days, $\mathrm{Bp}=8$ - on 4 days, $\mathrm{Bp}=80$ on 4 days, and $\mathrm{Bp}=8+$ was reached on two days, 1941 July 5 and Sept. 18. All these are the usual Greenwich days. For the 24 hours beginning 1940 March 24 at noon, Universal Time, $\mathrm{Bp}=9-$; and for the 24 hours beginning 1941 Sept. 18 , 9.00 U.T., $B D=90$. This shows that the whole range of $B p$ may occur, (in the case of 1940 March 18 and March 24 the extremes 00 and 90 occurred a few days apart!) and, therefore, the extension of the Cp-scale beyond 2.0 has been recommended.
$\| \mathrm{B}$ and Bp have now been given up in favor of Ck (Note 3) and Cp.\| Note 2. Specimen for Cp. The definition of Cp as given by Tables 1 and 2 is illustrated by Table 13. The first two column give 8 Kp indices which are nearly equal, and for which the sum of the weights g leads to the lower and upper limits of G for Cp according to Table2 (The order of the eight Kp-indices - here arranged increasing - is, of course, irrelevant for (p). The last 5 columns give various combinations of low and high Kp -indices.

It is perhaps surprising that a day with $C p=0.0$ may have seven intervals with $K p=00$ and one interval with $K p=4$ - (a disturbance beginning in the late evening). Since $K p=00$ is quite rare, such extreme combinations will hardly ever occur. It would have been easy to introduce additional restrictions in the definition of Cp , for instance, to say that $\mathrm{Cp}=0.0$ should have no Kp beyond $2-$, say. But such complications-beyond the limits of G set in Table 2-appear rather unnecessary, because the characterization of a day with intervals unequally disturbed requires a compromise in any case. Moreover, cp shall continue the standard of Ci, and the reader is asked to refer to the diagram in IATME Bull. No. $12 \mathrm{~b}, \mathrm{pp}$. 109-110, which demonstrates the great variety of combinations of eight Kp-indices which, in the past, have occurred on days characterized by identical values for Ci.

Continued absolutely quiet conditions on the whole Earth for more than a few hours are so rare, that even $C p=0.0$ does not exclude the occurrence of small disturbances at some polar stations beyond the limits set for $K=0$; even the quietest day of $1932 / 33$, namely,

1933 Febr. 17, with $\mathrm{Kp}=0000000+00000+\mathrm{Oo}$ (see IATME Bull. No. 12d, p. 23) brought, at Fort Rae [7], passing disturbances with hourly ranges in H and Z up to 60γ, and 5 local K-indices 2.

Table 13. Characteristic values of Kp -indices leading to Cp .

Cp	Lower limit	Upper limit	$\begin{array}{\|l} \hline 7 \mathrm{xOo} \\ +\quad \mathrm{lx} \\ \hline \end{array}$	$\begin{array}{r} 7 \times 0+ \\ +\quad 1 x \\ \hline \end{array}$	$\begin{array}{r} 6 \times 00 \\ +\quad 2 x \\ \hline \end{array}$	$\begin{array}{r} 5 \mathrm{xO} 0 \\ +\quad 3 \mathrm{x} \end{array}$	$\begin{array}{r} 3 x 00 \\ +5 x \end{array}$
0.0	Oo0000000 00000000	0+0+1-1- 1-1-1-1-	4-	20	2+	20	10
0.1	$0+1$-1-1- 1-1-1-1-	lolololo lolol+l+	4+	$3+$	30	$2+$	$2-$
0.2	lolololo 101+l+1+	$1+1+1+1+2-2-2-2-$	5-	40	4-	$3-$	20
0.3	$1+1+1+2-2-2-2-2-$	2-202020 20202020	50	5-	40	3+	2+
0.4	20202020 20202020	$2020202+2+2+2+2+$	$5+$	50	4+	4-	$3-$
0.5	20202+2+ 2+2+2+2+	2+2+2+2+ $2+2+3-3-$	$6-$	5+	5-	4-	30
0.6	$2+2+2+2+2+3-3-3-$	$2+2+3-3-3-3-3-3-$	60	6-	5-	40	3+
0.7	2+3-3-3-3-3-3-3-	$3-3-3-3-3-3-3030$	$6+$	60	50	4+	$3+$
0.8	3-3-3-3-3-303030	3030303030303030	7-	$6+$	$5+$	$5-$	$4-$
0.9	$303030303030303+$	$30303+3+3+3+3+3+$	70	7-	6-	5-	40
1.0	$303+3+3+3+3+3+3+$ $3+3+4-4-4-4-4-4-$	$3+3+3+4-4-4-4-4-$ $4-4-4-4-4-4-4040$	7+	70	60	50	$4+$
		4-4-4-4-4-4-4040	$8-$	7+	6+	5+	4+
1.2	4-4-4-4-4-404040	40404040 40404+4+	80	80	7-	6-	5-
1.3	40404040 $4+4+4+4+4+5-5-5+4+$	4+4+4+4+ 4+4+5-5-	$8+$	$8+$	70	60	50
1.4	-5-5-	5-5-5-5-5-5-5-5	$9-$	$9-$	7+	$6+$	$5+$
1.5	5-5-5-5-5-5-5-50	5-505050 50505050	9-	9-	8-	$7-$	6-
1.6	5050505050505050	$5+5+5+5+5+5+5+5+$	90	90	80	70	60
1.7	$5+5+5+5+5+5+5$	6-6-6-6-6-6-6-60			$8+$	8-	7-
1.8	6-6-6-6-6-6-6060	$60606+6+6+6+6+6+$				8+	70
1.9	$606+6+6+6+6+6+6+$	70707070 70707+7+	\because		90	9-	80
2.0	70707070 707+7+7+	7+7+8-8-8-8-8-8-				90	$8+$
2.1	$7+8+8+8-8-8-8-8-$	80808080 808+8+8+					-
2.2	$8080808080808+8+$	80808080 8+8+8+8+					
2.	$8080808+8+8+8+8+$	8+9-9-9-9-9-9-9-	-				90
2.4	9-9-9-9-9-9-9-9-	9-9-9-9-9-909090					
2.5	9-9-9-9-90909090	90909090 90909090		..	\because	\because	

Note 3. Looal daily character-figures Ck and Cs . Every observatory that scales K-indices may, if it wants to do so, derive a local daily character-figure Ck by a process similar to that by which Cp is derived from Kp. The following weights are proposed:

Table 14. Weights k to be assigned to K-indices to derive Ck.

K	$=0$	1	2	3	4	5	6	7	8	9
$k=$	0	3	7	15	27	48	80	140	240	400

The sum of the 8 values of k for the day is used as G in the key given in Table 2, and the result is called Ck.

Example (Cheltenham): 1949 June 5. K-indices 3545 4455. Sum of weights k, according to Table $14,15+3 \mathrm{x} 27+4 \mathrm{x} 48=288$, from Table 2, therefore, $\mathrm{Ck}=1.4$.

Observatories for which conversion-tables (to convert K-indices into standardized Ks-indices) are available (IATME Bull.No. l2b, pp. 99-101), may also derive from Ks, via Tables 1 and 2, a standardized character-figure Cs to approximate Cp .

Table 15. Daily character-figures, April to June 1949, world-wide Ci and Cp, and looal Cs and Ck for Wingst and Cheltenham, indicated by their tenfold values $\mathrm{Ti}, \mathrm{Tp}, \mathrm{Ts}, \mathrm{Tk}$.
(As a looal daily measure of activity, Ck, derived from looal K-indices, is recommended).

In Table 15 , the ten-fold values $T s$ and $T k$ of Cs and Ck , for Wingst and Cheltenham, are compared with $\mathrm{Ti}=10 \mathrm{Ci}$ and $\mathrm{Tp}=10 \mathrm{Op}$. It appears that the approximation to Cp is not much improved by the use of the standardized Ks-indices instead of the original K-indices [2]. Therefore, the use of the simple Ck may be recommended.

For any individual observatory, the weights k given in Table 14 could be further adjusted to improve the similarity of Ck and Cp ; it would also be possible to shorten the process (K to Ks to g to G to Cs) by introducing, for every season, separate conversion-keys (K to g) for each of the eight three-hour-intervals. But it is doubtful whether the result of suoh refinement would pay the effort.

The way from the K-indices to Cp proposed in this paper (§ 4) goes via Kp. Another possibility - namely (K to Ck to Cp) - is ruled out as it would be open to some of the objections (§ 9) to the Ci-scheme.

Note 4. Looal bias in C and Ci. The daily variation in the targetsectors of solar particle radiation P (see the discussion in [8]) makes the North-European observatories (e.g. Tromsö, Sodankylä, Dombås, Rude Skov, Wingst, in longitudes 9° to $29^{\circ} \mathrm{E}$) alternate in sensitivity to P, so-to-say, with the North-7est American observatories (e.g. College, Meanook, Sitka, in longitudes 113° to $148^{\circ} \mathrm{W}$):

The intervals 06 to 09 GMT and 18 to 21 GMT
are in N -Europe in NV-America
quietest most disturbed
most disturbed quietest.

Consider two Greenvich days, Dl, most disturbed between 06 to 09 GMT, and D2 most disturbed between 18 to 21 GMT: Comparing D1 with D2, Europe will have a bias to regard D2 relatively more active, and West-America will have a similar bias towards Dl. This would show in Ck and presumably in C too. Since so many observatories furnishing C-characters are in Europe, this bias may also be expected in Ci: and in fact, apart from the shift in ($\mathrm{Ci}-\mathrm{Cp}$) from year to year, the days with positive (Ci - Cp) are, in general, more disturbed in the evening, while those with negative (Ci - Cp) are more disturbed in the morning of the Greenvich day. This has been pointed out in $\oint 6$; two more groups of days (Table l6) with large differences (Ci - Cp) will nov be discussed by means of local K-indices and character-figures Ck (Note 3).

Table 16. K-indices and local Ck-figures for selected days at European and at NW-American observatories.

The first pair of days in Table 16 are the extreme oases of Table 10: Both have $C p=0.9$, but 1933 January 22 has $C i=1.4$, and 1947 April 15 has $\mathrm{Ci}=0.5$. The seoond group are the days with the greatest differences (Ci - Cp) in 1949, namely 1949 Febr .3 ($\mathrm{Ci}=1.2, \mathrm{Cp}=0.7$) and Jan. $22(\mathrm{Ci}=0.4, \mathrm{Cp}=0.8)$. The K -indices for Febr .4 ($\mathrm{Ci}=1.2$, $C p=1.3$) are given too, beoause it is quite oharacteristio to see, in the disturbance extending through the three-hour-intervals 1949 Febr .3 , 18.00 GMT to Febr.4, 15.00 GMT, how the looal European bias raises the two K-indices 18.00 to 24.00 , while the American bias raises the three K-indices, 6.00 to 15.00 . Ci is 1.2 for both days, 1949 Febr .3 and 4, obviously as a result of the "European bias" emphasizing the evening disturbance of Febr .3 against the forenoon disturbance of Febr. 4 . Both Febr. 4 and Jan. 22 (with $\mathrm{Cp}=0.4$) appear in Ci grossly underrated against Febr.3, from the standpoint of the American observatories.

Note 5. Characterization of months and years. The difficulty to characterize, by a single figure, a whole day, with different levels of magnetic activity, is even more pronounced in the case of whole months, years etc. In recent discussions ([5] and [8]), it has been proposed to consider frequenoies of Kp-indices.

Table 17. Average oharacters for months and year, 1949, for twelve typioal observatories, and frequencies of
charaoters for 1949.

	Tr	Lo	RS	Ni	Ch	Ho	Am	Co	Le	Es	Ab	11	lean	$\begin{aligned} & \text { Iean } \\ & \text { Cp } \end{aligned}$
				0.6	0.1	0.1	0.3	0.7	0.7	0.8	1.0		0.68	0.72
										0.7				
Mr							-		- 7	0.8	1		0.75	81
			1.3			0.0	0.2		0.6	0.6				. 61
	1.		1.5	.	0.2	0.1	0.2		- .7	0.7	1.0	1.1		69
Je	1.	1.5	,	0.3		0.0	0.2	0.7	0.7	. 8	1.0	1.0		
J1	1.0	1.3	1.2	0.4	.	0.0	0.0	0.5	0.5	0.	.	-	0.47	0.38
Au			1	-	. 2	0.1	-	0.8	.	-	0.9	.	0.62	
Se	1.3	1.3	1.2	0.5			0.2							0.63
00	1.6	1.7	1.6	0.7	0.3	0.3	0.4	1.0	1.0	.	1.2	1.2	0.89	0.89
No	1.3				0.2	0.2	0.3		0.8	0.9	1.0			
De	0.8	1.2											0.49	0.44
-	1.2	1.5	1.4	0.5			0.2		0.7	0.7	.			
Number of days in 1949 with $C=0,1$, or 2														

In order to demonstrate the inedaqueoy of monthly averages of Cl , Table 17 gives averages oharacters for twelve typioal stations, for the months and the year 1949.

The monthly averages of Ci vary so little, that the shifts in the standard of Ci (§ 7) distort the impression of the aotivity level given by the average Ci . For instance, the average character-figures are

	Ci=	Cp=		Ci=	Cp=
for December 1932	0.67	0.44	for the 13 months $1932 / 33$	0.65	0.48
for June 1946	0.63	0.74	for the year 1946	0.61	0.70

Of course, the average $C p$ is a more reliable indication of the relative level of activity. But despite of their uncorrupted standard, the monthly averages of Cp are disappointing beoause they give a too colourless picture: Low averages of Op can, it is true, be relied upon as indicating a quiet month, but medium or high monthly averages may be misleading. The most blatant case is that of March 1940, with the average $C p=0.80, C i=0.81$. That month brought, up to the $23 r d$, 8 days with $C p=0.0$ or 0.1 , but in the last 9 days, there were three days of intense storm with $C p=2.1$. The average $C p$ for the first 23 days is 0.40 , for the last 9 days, 1.74. If we look for a month with a similar average Cp, we find April 1950, in which the most
disturbed day had $\mathrm{Cp}=1.6$ only, and no Kp higher than 7-. In the month with the highest monthly average of Cp, September 1947 with $C p=1.11$, no day reached the level $C p=2.0$.

Similar remarks have sometimes been made to disoredit the Kindices: Hourly ranges, plotted in gammas, give, to the unexperienced eye, a much more pronounced pioture of the changes in activity than K -indices. Indeed, a change of K from 6 to 9 means, of course, a muoh bigger numerical increase in the ranges than that from $K=1$ to $\mathrm{K}=4$ (see Table 14). It should, however, be remembered that the Kindex is approximately a logarithm of a range. Likewise, Ci or Cp are somewhat conservative in their scale; the picture of a great magnetic storm connected, to the geomagnetician, with $\mathrm{Ci}=2.0$, is a result of training and experience rather than the impression made by that modest figure. It would have been easy, of course, - though uneconomical - to devise more impressive scales, with graphs consuming more paper than the ourrent note-script for K, $K p$ or Cp.

Now, in spite of all arguments that speak in favor of characterizing months etc. by frequencies of $K p$, there will probably always be a demand for monthly measures of activity expressed by not more than one figure, and magneticians should try their best in that direction. As demonstrated above, the average Cp is not good; it fails to express the great difference of the two model months, A and B, discussed in [9], which have different numbers of very quiet days $(C p=0.0)$, moderately disturbed days $(C p=1.0)$, and storm days ($C p=2.0$), namely,
$\begin{array}{lrl}\text { A with } 5 \text { days } 0.0, & 25 \text { days } 1.0, & \text { no day 2.0, } \\ \text { B with } 15 \text { days } 0.0, & 5 \text { days } 1.0, & 10 \text { days 2.0, }\end{array}$ but the same average $C p=0.83$.

A compromise seems possible by using the conception of the average amplitude, introduced in one of the first K-papers [6], in the following form: Every Kp-index is replaced by its weight g, according to Table 1 . The average of the g is oomputed and doubled. That gives the average amplitude Ap, in gammas, for a standard observatory. This computation may be abridged by using the monthly frequen-cẏ-tables of Kp - such as those given in IATME Bull.No. 12o, pp. 131-133. Looal measures may be computed from the K-indices, using the weights k from Table 14.

Table 18 of average amplitudes Ap has been computed for the 147 months for which Kp-indices are available. It will not be disoussed here, exoept to say that Ap proves to be superior to Cp in ranging the two months March 1940 and April 1950 mentioned above, with nearly equal average $C p$, more reasonably: March 1940 gets the highest value of Ap for the whole series, 73γ, while April 1950 gets 37γ only. Ap agrees with Cp at the lowest levels of aotivity: The months of July and November, 1944, with the lowest average $C p=0.26$ and 0.25 , get also the lowest average $A p=11$ and $12 \gamma_{0}-$ With the u-measure, Ap shares the emphasis on the most intense disturbances.

Table 18. Average amplitudes $A p$ for months and years. Unit γ.

	Ja	Fe	Mr	Ap	街	Je	J1	Au	Se	Oc	No	De	Year
$\begin{aligned} & 1932 \\ & 1933 \end{aligned}$	19	23	$\stackrel{\circ}{5}$	25	$\stackrel{3}{3}$	17	15	$\begin{aligned} & 23 \\ & 18 \end{aligned}$	24	20		18	21
1940	30	25	73	35	27	33	24	21	28	28	32	29	32
1941	28	36	66	30	21	22	39	33	53	23	32	23	34
1942	18	23	45	34	16	16	25	26	34	45	29	21	28
1943	21	19	26	28	29	25	29	62	51	47	40	28	34
1944	25	24	35	30	19	16	11	18	20	22	12	27	22
1945	20	22	34	26	18	14	19	14	19	22	15	26	21
1946	25	44	67	40	35	32	44	23	69	26	25	18	37
1947	25	23	64	35	28	32	32	51	64	46	28	21	37
1948	24	25	35	26	38	20	20	40	30	54	32	26	31
1949	41	29	38	28	37	28	15	28	26	51	31	17	31
1950	24	35	29	37	33	28	28	49	45	56	41	32	36
1951	32	43	
Average for the years 1932/33 and 1940 to 1950													
	25	27	45	31	27	24	25	31	39	37	28	24	30

References.

[1] Trans.Oslo 1948 Meeting. IATME Bull.No, 13, pp. 22 f. and pp. 339-341. Washington 1950.
[2] Bartels, J.: "The standardized index, Ks, and the planetary index Kp." IATME Bull.No. 12b, 97-112 Washington 1949.
[3] See quarterly tables in Journ.Geophys.Res., beginning Vol.54, 295-299, Washington 1949; monthly in "Ionospheric Data", issued by Central Radio Propagation Lab.Washington (F-series). Numerioal Tables and 27-day reourrence diagrams in the IATME Bull. No. 12 b (for 1945 to 1948), 120 (for 1940 to 1944, and 1949), 12d (Aug. 1932 to August 1933). Complete 27-day diagrams in Abhand..Akad. Wiss.Göttingen, Math.Phys.Kl., Sonderheft, 1951, pp. 12-29.
[4] Schmidt, Ad. "Die internationalen erdmagnetisohen Charakterzahlen" Meteorol.Ztschr, 33,481-492 (1916). See also the abstracts from the reports on the conferences at Innsbruck, Terr.Magn. 10, 197. (1905); and at Berlin : Terr.Magn. 15, 187-187 (1910).
[5] Howe, H.H., Journ.Geophys.Res. 55, 153-157 (1950); with remarks by J.Bartels, l.c., 158-160.
[6] Bartels, J., N.H.Heck and H.F.Johnston, Terr.Magn. 44, 411 P.(1939).
[7] Stagg, J.M., British Polar Year Expedition Fort Rae, Now.Canada, 1932-33, Voi. II, London, Roy.Soc., 1937.
[8] Bartels, J., Journ. Geophys.Research 55, 427-435 (1950)
[9] Dijk, G. van, "Measures of terrestrial-magnetic activity". With remarks by J.Bartels. Terr.Magn. 40, 3'71-382 (1935). Some of the arguments are reprinted in Chapman-Bartels, Geomagnetism, Vol.l, pp. 3931.

Main oonclusion: The daily planetary oharacter-figure Cp, based exclusively on Kp-indices, appears to meet the requirements of the IATME for an adequate and homogeneous oontinuation of the series of daily international magnetic charaoter-figures Ci.

Geophysikalisches institut Universität Göttingen,
8 April 1951

